Физика

Действительно ли существует темная энергия?

Возможно, в нашей Вселенной нет темной энергии. Согласно наблюдениям, позволившим астрономам сделать вывод о ее существовании, можно также предположить, что наша Галактика лежит в центре гигантской космической пустоты, или «войда»
Основные положения:

Статья впервые опубликована в журнале "В мире науки", №6 (июнь) за 2009 г. Текст статьи находится в прикрепленном файле.

Прикрепленный файлРазмер
energiya.pdf819.63 кб

Невероятные планеты

Астрономы находят планеты даже там, где не предполагали. Астрономы полагают, что белые карлики - это не звезды, а их трупы. Каждый белый карлик был когда-то похож на Солнце и светил так же ярко.
Основные положения:

Статья впервые опубликована в журнале "В мире науки", №8 (август) за 2009 г. Текст статьи находится в прикрепленном файле.

Прикрепленный файлРазмер
neverplanet.pdf957.51 кб

Проблемы управляемого термоядерного синтеза (УТС)

Материалы Международной конференции "ПУТЬ В БУДУЩЕЕ - НАУКА, ГЛОБАЛЬНЫЕ ПРОБЛЕМЫ, МЕЧТЫ И НАДЕЖДЫ" 26-28 ноября, 2007 Институт прикладной математики им. М.В. Келдыша РАН, Москва 

1. Физические предпосылки УТС

Для производства энергии предполагается использовать ядерные реакции слияния легких ядер. Среди многих реакций такого типа наиболее легко осуществима реакция слияния ядер дейтерия и трития

Здесь через обозначено стабильное ядро гелия (альфа частица), через N – нейтрон, в скобках обозначена энергия частиц после реакции, . В этой реакции энергия, выделяющаяся на частицу с массой нейтрона, равна примерно 3.5 МэВ. Это примерно в 3-4 раза больше энергии на частицу, выделяющейся при делении урана.

Какие проблемы возникают при попытке реализации реакции (1) для получения энергии?

Главная проблема - трития нет в природе. Он радиоактивен, период полураспада у него приблизительно равен 12-ти годам, поэтому, если он и был когда-то в больших количествах на Земле, то от него давно ничего не осталось. Количество же трития, получаемого на Земле за счет естественной радиоактивности или за счет космического излучения ничтожно мало. Небольшое количество трития получается в реакциях, идущих внутри атомного уранового реактора. На одном из реакторов в Канаде организован сбор такого трития, но его наработка в реакторах очень медленна и производство оказывается слишком дорогим.

Таким образом, производство энергии в термоядерном реакторе на основе реакции (1) должно сопровождаться одновременной наработкой трития в этом же реакторе. Как это можно сделать мы будем обсуждать ниже.

Обе частицы, ядра дейтерия и трития, участвующие в реакции (1), имеют положительный заряд и потому отталкиваются друг от друга кулоновской силой. Для преодоления этой силы частицы должны иметь большую энергию. Зависимость скорости реакции (1), , от температуры тритиево-дейтериевой смеси показана на Рис.1 в двойном логарифмическом масштабе.

Рис.1. Скорости различных термоядерных реакций в зависимости от температуры ионов.

Видно, что с ростом температуры вероятность реакции (1) быстро возрастает. Приемлемая для реактора скорость реакции достигается при температуре T > 10 кэВ. Если учесть, что градусов, то температура в реакторе должна превышать 100 млн градусов. Все атомы вещества при такой температуре должны быть ионизованы, а само вещество в таком состоянии принято называть плазмой. Напомним, что по современным оценкам температура в центре Солнца достигает «лишь» 20 млн градусов.

Есть и другие реакции слияния, пригодные, в принципе, для выработки термоядерной энергии. Мы здесь отметим лишь две широко обсуждающиеся в литературе реакции

Здесь – изотоп ядра гелия с массой равной 3, p – протон (ядро водорода). Реакция (2) хороша тем, что для нее на Земле имеется сколько угодно топлива (дейтерия). Технология выделения дейтерия из морской воды отработана и относительно недорога. К сожалению, скорость этой реакции заметно меньше, чем скорость реакции (1) (см. Рис.1), поэтому для реализации реакции (2) требуется температура порядка 500 млн градусов.

Реакция (3) вызывает в настоящее время большой ажиотаж среди людей, занимающихся космическими полетами. Известно, что изотопа много на Луне, поэтому возможность его транспортировки на Землю обсуждается, как одна из приоритетных задач космонавтики. К сожалению, скорость этой реакции (Рис.1) также заметно меньше, скорости реакции (1) и требуемые температуры для осуществления этой реакции также находятся на уровне 500 млн градусов.

Для удержания плазмы с температурой порядка 100 – 500 млн градусов было предложено использовать магнитное поле (И.Е.Тамм, А.Д. Сахаров [1]). Наиболее перспективными сейчас представляются установки, в которых плазма имеет вид тора (бублика). Большой радиус этого тора мы обозначим через R , а малый через a . Для подавления неустойчивых движений плазмы помимо тороидального (продольного) магнитного поля B 0 требуется еще поперечное (полоидальное) поле. Существует два типа установок, в которых реализуется подобная магнитная конфигурация. В установках типа токамак полоидальное поле создается продольным током I , протекающим в плазме по направлению поля . В установках типа стелларатор полоидальное поле создается внешними винтовыми обмотками с током. Каждая из этих установок имеет свои преимущества и недостатки. В токамаке ток I должен быть согласован с полем . Стелларатор технически более сложен. Сейчас более продвинутыми являются установки типа токамак. Хотя имеются также большие, успешно работающие стеллараторы.

2. Условия на токамак-реактор

Мы укажем здесь лишь два необходимых условия, определяющих «окно» в пространстве параметров плазмы токамака реактора. Имеется, конечно, и множество других условий, уменьшающих это «окно», но они все-таки не так существенны.

1). Для того, чтобы реактор был коммерчески выгодным (не слишком большим), удельная мощность P выделяющейся энергии должна быть достаточно велика

Здесь n 1 и n 2 – плотности дейтерия и трития – энергия, выделяющаяся в одном акте реакции (1). Условие (4) ограничивает плотности n 1 и n 2 снизу.

2). Для того, чтобы плазма была устойчивой, давление плазмы должно быть заметно меньше давления продольного магнитного поля Для плазмы с разумной геометрией это условие имеет вид

При заданном магнитном поле это условие ограничивает плотность и температуру плазмы сверху. Если для осуществления реакции требуется увеличить температуру (например, от реакции (1) перейти к реакциям (2) или (3)), то для выполнения условия (5) нужно при этом увеличить магнитное поле .

Какое магнитное поле понадобится для реализации УТС? Рассмотрим сначала реакцию типа (1). Будем считать для простоты, что n 1 = n 2 = n /2 , где n – плотность плазмы. Тогда при температуре условие (1) дает

Воспользовавшись условием (5), найдем нижнюю границу для магнитного поля

В тороидальной геометрии продольное магнитное поле спадает, как 1/ r , по мере удаления от главной оси тора. Поле – это поле в центре меридионального сечения плазмы. На внутреннем обводе тора поле будет больше. При аспектном отношении

R / a ~ 3 магнитное поле внутри катушек тороидального поля оказывается в 2 раза больше . Таким образом, для выполнения условий (4-5) катушки продольного поля должны быть сделаны из материала, способного работать при магнитном поле порядка 13-14 Тесла.

Для стационарной работы реактора-токамака проводники в катушках должны быть выполнены из сверхпроводящего материала. Некоторые свойства современных сверхпроводников показаны на Рис.2.

Рис.2. Зависимость предельной величины магнитного поля от температуры для ряда современных сверхпроводников. Обозначения: IHe – сверхтекучий жидкий гелий, LH 2 – жидкий водород, LNe – жидкий неон, LN 2 pumped – жидкий азот под повышенным давлением, LN 2 ambient pressure – жидкий азот под атмосферным давлением.

В настоящее время в мире построено несколько токамаков со сверхпроводящими обмотками. Самый первый токамак такого типа (токамак Т-7), построенный в СССР в семидесятые годы, использовал в качестве сверхпроводника ниобий-титан ( NbTi ). Этот же материал использован в большом французском токамаке Tore Supra (середина 80-х годов). Из Рис.2 видно, что при температуре жидкого гелия магнитное поле в токамаке с таким сверхпроводником может достигать значений 4 Тесла. Для международного реактора-токамака ИТЭР решено использовать сверхпроводник ниобий-олово с большими возможностями, но и с более сложной технологией. Этот сверхпроводник используется в российской установке Т-15, запущенной в 1989 году. Из Рис.2 видно, что в ИТЭРе при температуре гелия порядка магнитное поле в плазме с большим запасом может достигать требуемых значений поля 6 Тесла.

Для реакций (2) и (3) условия (4)-(5) оказываются гораздо более жесткими. Для выполнения условия (4) температура плазмы в реакторе T должна быть в 4 раза больше, а плотность плазмы n в 2 раза больше, чем в реакторе, основанном на реакции (1). В результате давление плазмы повышается в 8 раз, а необходимая величина магнитного поля в 2.8 раза. Это означает, что на сверхпроводнике магнитное поле должно достигать значений 30 Тесла. Пока никто еще не работал с такими полями в большом объеме в стационарном режиме. Рис.2 показывает, что есть надежда создать в будущем сверхпроводник на такое поле. Однако, в настоящее время условия (4)-(5) для реакций типа (2)-(3) в установке токамак не могут быть реализованы.

3. Производство трития

В реакторе-токамаке камера с плазмой должна быть окружена толстым слоем материалов, защищающих обмотки тороидального поля от разрушения сверхпроводимости нейтронами. Такой слой, толщиной около метра, получил название бланкета. Здесь же в бланкете должен проводиться отвод тепла, выделяемого нейтронами при торможении. При этом часть нейтронов может быть использована для производства трития внутри бланкета. Наиболее подходящей ядерной реакцией для такого процесса является следующая реакция, идущая с выделением энергии

Здесь – изотоп лития с массой 6. Поскольку нейтрон – нейтральная частица, то кулоновский барьер отсутствует и реакция (8) может идти при энергии нейтрона, заметно меньшей 1 МэВ. Для эффективного производства трития число реакций типа (8) должно быть достаточно велико, а для этого должно быть большим число реагирующих нейтронов. Для увеличения числа нейтронов здесь же в бланкете должны быть расположены материалы, в которых идут реакции размножения нейтронов. Поскольку энергия первичных нейтронов, получающихся в реакции (1), велика (14 МэВ), а для реакции (8) требуются нейтроны с небольшой энергией, то, в принципе, число нейтронов в бланкете можно увеличить в 10-15 раз и, тем самым, замкнуть баланс по тритию: на каждый акт реакции (1) получить один или более актов реакции (8). Можно ли этот баланс реализовать практически? Ответ на этот вопрос требует детальных экспериментов и расчетов. От реактора ИТЭР не требуется, чтобы он обеспечил себя топливом, но на нем будут поставлены эксперименты для прояснения проблемы баланса трития.

Какое количество трития потребуется для работы реактора? Простые оценки показывают, что для реактора с тепловой мощностью 3 ГВт (электрической мощностью порядка 1 ГВт) потребуется 150 кг трития в год. Это примерно в раз меньше веса мазута, потребного для годовой работы тепловой электростанции такой же мощности.

В силу (8), первичным «топливом» для реактора является изотоп лития . Много ли его в природе? В природном литии присутствуют два изотопа

Видно, что содержание изотопа в природном литии достаточно высокое. Запасов лития в Земле при современной уровне потребления энергии хватит на несколько тысяч лет, а в океане – на десятки миллионов лет. Оценки, основанные на формулах (8)-(9), показывают, что природного лития надо добывать в 50-100 раз больше, чем требуется трития. Таким образом, для одного реактора с обсуждаемой мощностью потребуется 15 тонн природного лития в год. Это в 10 5 раз меньше, чем требуется мазутного топлива для тепловой электростанции. Хотя потребуется значительная энергия для разделения изотопов и в природном литии, дополнительная энергия, выделяющаяся в реакции (8), может компенсировать эти затраты.

4. Краткая история исследований по УТС

Исторически первым исследованием по УТС в нашей стране считается секретный Отчет И.Е.Тамма и А.Д.Сахарова, выпущенный в марте-апреле 1950 года. Он был опубликован позднее в 1958 году [1] . Отчет содержал обзор основных идей по удержанию горячей плазмы магнитным полем в тороидальной установке и оценку размеров термоядерного реактора. Удивительно, но строящийся сейчас токамак ИТЭР близок по своим параметрам к предсказаниям исторического Отчета.

Эксперименты с горячей плазмой начались в СССР с начала пятидесятых годов. Сначала это были небольшие установки разных типов, прямые и тороидальные, но уже в середине десятилетия совместная работа экспериментаторов и теоретиков привела к установкам, получившим название «токамак». От года к году размеры и сложность установок увеличивались, и в 1962 году была запущена установка Т-3 с размерами R =100 см, а = 20 см и магнитным полем до четырех Тесла. Опыт, накопленный за полтора десятилетия, показал, что в установке с металлической камерой, хорошо очищенными стенками и высоким вакуумом (до мм рт. ст.) можно получить чистую, устойчивую плазму с высокой температурой электронов. Л.А.Арцимович доложил об этих результатах на Международной Конференции по Физике плазмы и УТС в 1968 году в Новосибирске. После этого направление токамаков было признано мировым научным сообществом и установки этого типа стали строиться во многих странах.

Токамаки следующего, второго, поколения (Т-10 в СССР и PLT в США) начали работать с плазмой в 1975 году. Они показали, что надежды, порожденные токамаками первого поколения, подтверждаются. И в токамаках с большими размерами можно работать с устойчивой и горячей плазмой. Однако, уже тогда стало ясно, что реактора малых размеров создать нельзя и нужно размеры плазмы увеличивать.

Проектирование токамаков третьего поколения заняло около пяти лет и в конце семидесятых годов началось их строительство. В следующем десятилетии они последовательно вводились в строй и к 1989 году работало 7 больших токамаков: TFTR и DIII - D в США, JET (самый большой) в объединенной Европе, ASDEX - U в Германии, TORE - SUPRA во Франции, JT 60- U в Японии и Т-15 в СССР. На этих установках были получены температура и плотность плазмы, необходимые для реактора. Конечно, пока они были получены порознь, отдельно для температуры и отдельно для плотности. Установки TFTR и JET допускали возможность работы с тритием, и на них впервые была получена заметная термоядерная мощность P DT (в соответствии с реакцией (1)), сравнимая с внешней мощностью, введенной в плазму P aux . Максимальная мощность P DT на установке JET в экспериментах 1997 года достигала значений 16 МВт при мощности P aux порядка 25 МВт. Разрез установки JET и внутренний вид камеры показан на Рис. 3 а,б. Здесь же для сравнения показаны размеры человека.

Рис.3,а. Разрез установки JET. Слева внизу для сравнения показан размер человека.

Рис.3,б. Внутренний вид камеры установки JET. Во время разряда (длительностью до 10 сек) камера заполняется плазмой, нагретой до 100 миллионов градусов и пропускающей ток I величиной 2-4 миллиона ампер.

В самом начале 80-х годов началась совместная работа международной группы ученых (Россия, США, Европа, Япония) по проектированию токамака следующего (четвертого) поколения – реактора ИНТОР. На этой стадии ставилась задача просмотреть «узкие места» будущей установки без создания полного проекта. Однако, к середине 80-х годов стало ясно, что надо ставить более полную задачу, включая создание проекта. С подачи Е.П.Велихова, после длительных переговоров на уровне лидеров государств (М.С.Горбачева и Р.Рейгана) в 1988 году было подписано Соглашение и началась работа над проектом реактора-токамака ИТЭР. Работа проводилась в три этапа с перерывами и, в общей сложности, заняла 13 лет. Сама по себе дипломатическая история проекта ИТЭР драматична, не раз приводила к тупикам и заслуживает отдельного описания (см. например, книгу [2]). Формально проект был закончен в июле 2000-го года, но предстояло еще выбрать площадку для строительства и разработать Соглашение о строительстве и Устав ИТЭР. Все вместе это заняло почти 6 лет, и, наконец, в ноябре 2006-го года Соглашение о строительстве ИТЭР в Южной Франции было подписано. Ожидается, что само строительство займет около 10 лет. Таким образом, от момента начала переговоров до получения первой плазмы в термоядерном реакторе ИТЭР пройдет около 30 лет. Это уже сравнимо со временем активной жизни человека. Таковы реалии прогресса.

По своим линейным размерам ИТЭР примерно в два раза превосходит установку JET . По проекту магнитное поле в нем = 5.8 Тесла, а ток I = 12-14 МА. Предполагается, что термоядерная мощность достигнет значения , введенной в плазму для нагрева, будет порядка 10.

5. Развитие средств нагрева плазмы.

Параллельно с ростом размеров токамака развивалась технология средств нагрева плазмы. Сейчас используется три различных метода нагрева:

  1. Омический нагрев плазмы протекающим по ней током.
  2. Нагрев пучками горячих нейтральных частиц дейтерия или трития.
  3. Нагрев электромагнитными волнами в разных диапазонах частот.

Омический нагрев плазмы в токамаке присутствует всегда, но он недостаточен для нагрева до термоядерных температур порядка 10 – 15 кэВ (100 – 150 млн. градусов). Дело в том, что с нагревом электронов быстро падает сопротивление плазмы (обратно пропорционально ), поэтому при фиксированном токе падает и вложенная мощность. В качестве примера укажем, что в установке JET током в 3-4 МА удается нагреть плазму только до ~ 2 – 3 кэВ. При этом сопротивление плазмы настолько мало, что ток в несколько миллионов ампер (МА) поддерживается напряжением 0.1 – 0.2 В.

Инжекторы пучков горячих нейтралов появились впервые на американской установке PLT в 1976-77 годах, и с тех пор прошли большой технологический путь развития. Сейчас типичный инжектор имеет пучок частиц с энергией 80 – 150 кэВ и мощностью до 3 – 5 МВт. На большой установке обычно устанавливается до 10 – 15 инжекторов разной мощности. Полная мощность пучков, захваченная плазмой, достигает 25 – 30 МВт. Это сравнимо с мощностью небольшой тепловой электростанции. На ИТЭРе предполагается установить инжекторы с энергией частиц до 1 МэВ и суммарной мощностью до 50 МВт. Таких пучков пока нет, но идут интенсивные разработки. В Соглашении по ИТЭРу ответственность за эти разработки взяла на себя Япония.

Сейчас считается, что нагрев плазмы электромагнитными волнами эффективен в трех диапазонах частот:

  • нагрев электронов на их циклотронной частоте f ~ 170 ГГц;
  • нагрев ионов и электронов на ионной циклотронной частоте f ~ 100 МГц;
  • нагрев на промежуточной (нижне-гибридной) частоте f ~ 5 ГГц.

Для последних двух диапазонов частот уже давно существуют мощные источники излучения, и главная проблема здесь заключается в правильном согласовании источников (антенн) с плазмой для снижения эффектов отражения волн. На ряде больших установок за счет высокого искусства экспериментаторов удалось ввести в плазму таким путем до 10 МВт мощности.

Для первого, наиболее высокочастотного диапазона проблема изначально заключалась в разработке мощных источников излучения с длиной волны l ~ 2 мм. Первопроходцем здесь оказался Институт Прикладной Физики в Нижнем Новгороде. За полвека целенаправленного труда удалось создать источники излучения (гиротроны) с мощностью до 1 МВт в стационарном режиме. Именно такие приборы будут установлены на ИТЭРе. В гиротронах технология доведена до степени искусства. Резонатор, в котором происходит возбуждение волн электронным пучком, имеет размеры порядка 20 см, а требуемая длина волны в 10 раз меньше. Поэтому требуется резонансно вложить до 95% мощности в одну и очень высокую пространственную гармонику, а во все остальные вместе – не более 5%. В одном из гиротронов для ИТЭРа в качестве такой выделенной гармоники используется гармоника с номерами (числом узлов) по радиусу = 25 и по углу = 10. Для вывода излучения из гиротрона в качестве окна используется поликристаллический алмазный диск толщиной 1.85 мм и диаметром 106 мм. Таким образом, для решения проблемы нагрева плазмы пришлось развить производство гигантских искусственных алмазов.

6. Диагностики

При температуре плазмы в 100 млн. градусов никакой измерительный прибор вставить внутрь плазмы нельзя. Он испарится, не успев передать разумной информации. Поэтому все измерения являются косвенными. Измеряются токи, поля и частицы вне плазмы, а затем, с помощью математических моделей, производится интерпретация зарегистрированных сигналов.

Что же измеряется на самом деле?

Прежде всего – это токи и напряжения в окружающих плазму контурах. С помощью локальных зондов измеряются электрические и магнитные поля вне плазмы. Число таких зондов может доходить до нескольких сотен. По этим измерениям, решая обратные задачи, можно восстановить форму плазмы, ее положение в камере и величину тока.

Для измерения температуры и плотности плазмы используются как активные, так и пассивные методы. Под активным понимается метод, когда какое-либо излучение (например, луч лазера или пучок нейтральных частиц) инжектируется в плазму, а измеряется рассеянное излучение, несущее информацию о параметрах плазмы. Одна из сложностей задачи заключается в том, что, как правило, рассеивается лишь малая доля инжектированного излучения. Так при использовании лазера для измерения температуры и плотности электронов рассеивается лишь 10 -10 от энергии лазерного импульса. При использовании пучка нейтралов для измерения температуры ионов измеряется интенсивность, форма и положение оптических линий, появляющихся при перезарядке ионов плазмы на нейтралах пучка. Интенсивность этих линий очень мала и для анализа их формы требуются спектрометры высокой чувствительности.

Под пассивными методами понимаются методы, измеряющие излучение, постоянно исходящее из плазмы. В этом случае измеряется электромагнитное излучение в различных диапазонах частот или потоки и спектры выходящих нейтральных частиц. Сюда относятся измерения жесткого и мягкого рентгена, ультрафиолета, измерения в оптическом, инфракрасном и радио диапазонах. Интересными бывают как измерения спектров, так и положения и формы отдельных линий. Число пространственных каналов в отдельных диагностиках достигает нескольких сотен. Частота регистрации сигналов доходит до нескольких МГц. Каждая уважающая себя установка имеет набор из 25-30 диагностик. На токамаке-реакторе ИТЭР только на начальной стадии предполагается иметь несколько десятков пассивных и активных диагностик.

7. Математические модели плазмы

Задачи математического моделирования плазмы можно грубо разделить на две группы. К первой группе относятся задачи интерпретации эксперимента. Они, как правило, некорректны и требуют разработки методов регуляризации. Приведем несколько примеров задач этой группы.

  1. Восстановление границы плазмы по магнитным (зондовым) измерениям полей вне плазмы. Эта задача приводит к интегральным уравнениям Фредгольма первого рода или к сильно вырожденным линейным алгебраическим системам.
  2. Обработка хордовых измерений. Здесь мы приходим к интегральным уравнениям первого рода смешанного типа Вольтерра-Фредгольма.
  3. Обработка измерений спектральных линий. Здесь требуется учет аппаратных функций, и мы опять приходим к интегральным уравнениям Фредгольма первого рода.
  4. Обработка зашумленных временных сигналов. Здесь используются различные спектральные разложения (Фурье, вэйв-лет), подсчеты корреляций различных порядков.
  5. Анализ спектров частиц. Здесь мы имеем дело с нелинейными интегральными уравнениями первого рода.

Следующие рисунки иллюстрируют некоторые из вышеприведенных примеров. На Рис.4 показано временное поведение сигналов мягкого рентгеновского излучения на установке MAST (Англия), измеренное по хордам коллимированными детекторами.

Рис.4. Временное поведение сигналов мягкого рентгеновского излучения на установке MAST ( Англия). Томографическая обработка большого числа таких сигналов (более 100) позволяет определить двумерную картину движения плазмы.

Установленная диагностика регистрирует свыше 100 таких сигналов. Резкие пики на кривых соответствуют быстрым внутренним движениям («срывам») плазмы. Двумерная структура таких движений может быть найдена с помощью томографической обработки большого числа сигналов.

Рис.5 показывает пространственное распределение давления электронов для двух импульсов той же установки MAST .

Рис.5. Пространственное распределение давления электронов для двух импульсов установки MAST. Каждая точка на рисунке получена обработкой спектра фотонов рассеянного излучения лазерного луча.

Измеряются спектры рассеянного излучения лазерного пучка в 300 точках по радиусу. Каждая точка на Рис.5 является результатом сложной обработки энергетического спектра фотонов, зарегистрированных детекторами. Поскольку рассеивается лишь малая часть энергии пучка лазера, то число фотонов в спектре невелико и восстановление температуры по ширине спектра оказывается некорректной задачей.

Ко второй группе относятся собственно задачи моделирования процессов, происходящих в плазме. Горячая плазма в токамаке обладает большим количеством характерных времен, крайние из которых различаются на 12 порядков. Поэтому напрасны ожидания, что могут быть созданы модели, содержащие «все» процессы в плазме. Приходится использовать модели, справедливые лишь в достаточно узкой полосе характерных времен.

К числу основных моделей относятся:

  • Гирокинетическое описание плазмы. Здесь неизвестной является функция распределения ионов, зависящая от шести переменных: трех пространственных координат в тороидальной геометрии, продольной и поперечной скорости и времени. Для описания электронов в таких моделях используются методы усреднения. Для решения этой задачи в ряде зарубежных центров разработаны гигантские коды. Расчет по ним требует большого времени на суперкомпьютерах . В России сейчас таких кодов нет, в остальном мире их насчитывается около десятка. В настоящее время гирокинетические коды описывают плазменные процессы в диапазоне времен 10 -5 -10 -2 сек. Сюда входят развитие неустойчивостей и поведение плазменной турбулентности. К сожалению, эти коды не дают пока разумной картины переноса в плазме. Сравнение результатов расчетов с экспериментом находится еще в начальной стадии.
  • Магнитогидродинамическое (МГД) описание плазмы. В этой области в ряде центров созданы коды для линеаризованных трехмерных моделей. Они используются для изучения устойчивости плазмы. Как правило, разыскиваются границы неустойчивостей в пространстве параметров и величины инкрементов. Параллельно развиваются нелинейные коды.

Заметим, что за последние 2 десятилетия отношение физиков к неустойчивостям плазмы заметно изменилось. В 50-е – 60-е годы неустойчивости плазмы открывались «почти каждый день». Но со временем стало ясно, что лишь некоторые из них приводят к частичному или полному разрушению плазмы, а остальные лишь увеличивают (или не увеличивают) перенос энергии и частиц. Самая опасная неустойчивость, приводящая к полному разрушению плазмы, называется «неустойчивостью срыва» или просто «срывом». Она нелинейна и развивается в том случае, когда более элементарные линейные МГД моды, связанные с отдельными резонансными поверхностями, пересекаются в пространстве и, тем самым, разрушают магнитные поверхности. Попытки описать процесс срыва привели к созданию нелинейных кодов. К сожалению, пока ни один из них не способен описать картину разрушения плазмы.

В плазме сегодняшних экспериментов, помимо неустойчивости срыва, считаются опасными небольшое число неустойчивостей. Здесь мы назовем лишь две из них. Это так называемая RWM мода, связанная с конечной проводимостью стенок камеры и затуханием в ней токов, стабилизирующих плазму, и NTM мода, связанная с образованием магнитных островов на резонансных магнитных поверхностях. К настоящему времени создано несколько трехмерных МГД кодов в тороидальной геометрии для изучения этих типов возмущений. Идут активные поиски методов подавления указанных неустойчивостей, как на ранней стадии, так и на стадии развитой турбулентности.

  • Описание переносов в плазме, теплопроводность и диффузия. Около сорока лет назад была создана классическая (основанная на парных соударениях частиц) теория переноса в тороидальной плазме. Эта теория была названа «неоклассической». Однако, уже в конце 60-х годов эксперименты показали, что перенос энергии и частиц в плазме гораздо больше неоклассического (на 1 – 2 порядка величины). На этом основании обычный перенос в экспериментальной плазме называется «аномальным».

Было предпринято много попыток описать аномальный перенос через развитие турбулентных ячеек в плазме. Обычный путь, принятый в последнем десятилетии во многих лабораториях мира, заключается в следующем. Предполагается, что первичной причиной, определяющей аномальный перенос, являются неустойчивости дрейфового типа, связанные с градиентами температуры ионов и электронов или с присутствием запертых частиц в тороидальной геометрии плазмы. Результаты расчетов по таким кодам приводят к следующей картине. Если градиенты температуры превышают некоторое критическое значение, то развивающаяся неустойчивость приводит к турбулизации плазмы и резкому увеличению потоков энергии. Предполагается, что эти потоки растут пропорционально расстоянию (в некоторой метрике) между экспериментальными и критическими градиентами. На этом пути в последнее десятилетие построено несколько транспортных моделей для описания переноса энергии в плазме токамака. Однако, попытки провести сравнение расчетов по этим моделям с экспериментом не всегда приводят к успеху. Для описания экспериментов приходится предполагать, что в разных режимах разрядов и в разных пространственных точках сечения плазмы главную роль в переносе играют разные неустойчивости. В результате предсказание не всегда оказывается надежным.

Дело осложняется еще и тем, что за последние четверть века открыто много признаков «самоорганизации» плазмы. Пример такого эффекта приведен на Рис.6 а,б.

Рис.6 а. Профили плотности плазмы для двух импульсов установки MAST с одинаковыми сценариями тока плазмы, но с разной скоростью напуска газа.
Рис.6 б. Нормализованные профили электронного давления для тех же импульсов установки MAST.

Рис.6а показывает профили плотности плазмы n ( r ) для двух разрядов установки MAST с одинаковыми токами и магнитными полями, но с разной скоростью подачи газа дейтерия для поддержания плотности. Здесь r – расстояние до центральной оси тора. Видно, что профили плотности сильно различаются по своей форме. На Рис.6б для тех же импульсов показаны профили электронного давления , нормированные в точке – профиль температуры электронов. Видно, что «крылья» профилей давления хорошо совпадают. Из этого следует, что профили электронной температуры как бы «подстраиваются», чтобы сделать профили давления одинаковыми. Но это означает, что «подстраиваются» коэффициенты переноса, то есть они не являются функциями локальных параметров плазмы. Такая картина в целом и называется самоорганизацией. Несовпадение профилей давления в центральной части объясняется наличием периодических МГД колебаний в центральной зоне разряда с большей плотностью. Профили давления на крыльях совпадают, несмотря на эту нестационарность.

В наших работах [3-4] предполагается, что эффект самоорганизации определяется одновременным действием многих неустойчивостей. Нельзя выделить среди них главную неустойчивость, поэтому описание переноса следует связывать с какими-то вариационными принципами, которые реализуются в плазме за счет диссипативных процессов. В качестве такого принципа предлагается использовать принцип минимума магнитной энергии, предложенный Кадомцевым [5]. Этот принцип позволяет выделить некоторые специальные профили тока и давления, которые принято называть каноническими. В транспортных моделях они играют ту же роль, что и критические градиенты. Модели, построенные на этом пути, позволяют разумно описать экспериментальные профили температуры и плотности плазмы в разных режимах работы токамака [6].

8. Путь в будущее. Надежды и мечты.

За более чем полвека исследований горячей плазмы пройдена заметная доля пути к термоядерному реактору. В настоящее время наиболее перспективным представляется использование для этой цели установок типа токамак. Параллельно, хотя и с задержкой на 10-15 лет, развивается направление стеллараторов. Какая их этих установок окажется в конце концов более подходящей для коммерческого реактора, сейчас нельзя сказать. Это может быть решено лишь в будущем.

Прогресс в исследованиях по УТС, начиная с 60-х годов, показан на Рис.7 в двойном логарифмическом масштабе.

Рис.7. Прогресс в исследованиях на токамаках за последние 40 лет. Открытыми кружками и открытой звездочкой отмечены эксперименты с дейтериево-тритиевой плазмой на установках JET и TFTR. Показаны также максимальные параметры для крупнейшего стелларатора LHD и установки, основанной на принципе Z – пинча. Максимальные параметры для импульсных установок отмечены звездочками. С правой стороны укрупненно показаны цели основных этапов исследований.

Здесь по горизонтали отложена температура ионной компоненты плазмы в млн. градусов, а по вертикали - величина произведения давления ионов на время удержания энергии ( в единицах (атмосфера*сек)). Более светлым (оранжевым) цветом закрашена область, в которой параметр ( см. раздел 4) изменяется от 1 до 10. В более темной области (красной) Q > 10. Именно здесь должен работать строящийся международный токамак ИТЭР. Из рисунка 7 видно, что за 40 лет температура ионов в токамаках увеличилась в 100 раз, а произведение более, чем в 1000 раз. На этом же рисунке показаны достижения, полученные на установках других типов. Самый большой в мире стелларатор LHD ( Япония) отстает от токамаков JET и TFTR на один порядок по температуре и на 1.5 порядка по параметру . Импульсные установки (IFE) , отмеченные звездочками, также еще далеки от желанной цели.

В ходе исследований на токамаках не было обнаружено принципиальных физических препятствий для дальнейшего увеличения параметров плазмы. Однако, особых подарков от природы тоже получено не было. Так оказалось, что термоядерный реактор не может быть маленьким, в то время, как маленькие атомные реакторы уже давно работают на ледоколах и подводных лодках. В результате, для продвижения к реактору, затраты на постройку токамаков каждого следующего поколения пришлось увеличивать почти на порядок.

Для количественной оценки расстояния до термоядерной электростанции сравним капитальные затраты на единицу мощности в ИТЭРе и на обычной атомной станции. Сейчас стоимость ИТЭРа оценивается в 10 млрд. долларов США, а его тепловая мощность по проекту равна Отсюда следует, что капитальные затраты на 1 кВт тепловой мощности составляют 20 тысяч долларов. В атомной энергетике один блок с электрической мощностью 1 ГВт (тепловой мощностью 3 ГВт) сейчас стоит примерно 1.5 млрд. долларов, т.е 500 долларов за 1 кВт тепловой мощности. Отсюда следует, что удельные капитальные затраты в термоядерном реакторе ИТЭР в 40 раз больше, чем в атомном реакторе. Видно, что установка ИТЭР очень далека от коммерческого реактора. Для создания такого реактора требуется еще пройти большой (в основном технологический) путь.

Сейчас (в конце 2007 года) мировое научное сообщество представляет себе развитие УТС примерно следующим образом. ИТЭР заработает в 2016-2017 годах и основные его научные результаты будут получены к 2020-му году. Параллельно в 2010-2015 годах должно начаться проектирование международного реактора следующего (пятого) поколения. Для него принято условное название ДЕМО (ДЕМОнстрационный реактор) и даже согласовано, что он будет строиться в Японии. Окончания его строительства следует ожидать к 2025-2030-му году. Эта установка должна решать уже технологические задачи и вырабатывать решения для строительства коммерческого реактора. Если все пойдет нормальным путем, то появления первой промышленной термоядерной электростанции можно ожидать к 2050-му году, т.е. к столетию со дня начала работ по УТС.

А что же делается в России? В чем наши надежды?

За годы, прошедшие после перестройки, ситуация в науке вообще и в исследованиях по УТС, в частности, сильно ухудшилась. Уже больше 10-ти лет из-за недостатка финансирования не эксплуатируется установка Т-15. Состарился и уменьшился штат работающих сотрудников. Сегодня многие из наших ученых работают за рубежом.

Чтобы переломить ситуацию, коллектив Института Ядерного Синтеза РНЦ Курчатовский Институт внес в правительство предложение по Федеральной Целевой Программе «Развитие УТС». В ней предполагается расконсервация и модернизация установки Т-15., привлечение к работе по УТС молодых ученых, активизация нашей работы по проекту ИТЭР и подготовка сотрудников для работы на этой установке, участие России в проекте ДЕМО. В перспективе предполагается строительство термоядерной электростанции в России в середине века. Пока представленная Программа правительством России не утверждена.

Литература

1. И.Е. Тамм, А.Д. Сахаров, 1958. Физика плазмы и проблема управляемых термоядерных реакций. М. Изд-во АН СССР, 1958. т.1, с. 3-41.

2. Л.Г. Голубчиков, ИТЭР – решающий шаг, Москва, МИФИ, 2004.

3. Ю.Н. Днестровский, А.Ю. Днестровский, С.Е. Лысенко, Физика Плазмы, т. 31, 2005, с. 579.

4. Yu.N. Dnestrovskij, K.A. Razumova et al, Nucl. Fusion, V. 46, 2006, p.953.

5. Б.Б. Кадомцев, Физика Плазмы, т. 13, 1987, с. 771.

6. Yu.N. Dnestrovskij, J.W. Connor et al, Plasma Physics Contr. Fusion, v.49, 2007, p.1477.

Эволюция Вселенной с точки зрения синергетики

Развитие синергетического взгляда на мир приводит к постановке целой серии неожиданных вопросов. Остаются ли атомы неизменными, раз и навсегда данными, или же в процессе эволюции Вселенной они тоже эволюционируют? Имеет ли неживое память, иначе говоря, влияет ли на протекающие сегодня в сложной структуре процессы ее «предыстория»? Является ли природа индифферентной, безразличной к возникающим в ней структурам? Имеет ли она внутренние предрасположенности к определенного рода формам? Какие пути эволюции «выбирает» природа, какие формы организации «выживают» на «теле природы»? Почему природа так экономна: почему она идет кратчайшим путем? Каким образом природе удается найти наиболее устойчивые формы? Как природа научилась ускорять эволюцию?

Что «предпочитает» природа? Спектры эволюционных форм

Поиск спектров эволюционных форм природы – это, по существу, сверхзадача, близкая к задаче Гейзенберга в ядерной физике, когда требуется написать нелинейные уравнения некой среды, которая как самоорганизующаяся давала бы устойчивые состояния в виде спектра элементарных частиц.

До сих пор, например, непонятно, почему количество химических элементов (типов атомов) ограничено. Почему атомов порядка сотни, а не, скажем, существенно больше или меньше? Почему существует дискретный набор зарядов ядер атомов, спектр типов атомов? Почему заряды целочисленны? Эти вопросы затрагивают глубинную физическую, квантовомеханическую основу описания химических свойств и реакций.

Есть основания поставить задачу получения спектра атомов как самообразований, структур самоорганизации некой открытой нелинейной среды (спектра форм, спектра масс, спектра зарядов).

Весь спектр атомов, как он представлен в периодической системе Д.И. Менделеева, должен быть получен как спектр собственных функций среды, определяемой соответствующими нелинейными дифференциальными уравнениями.

Аналогичный подход, вероятно, имеет смысл и в области астрофизики. Быть может, все известные нам астрофизические объекты (звезды, галактики, скопления и сверхскопления галактик) составляют часть спектра эволюционных форм наблюдаемой Вселенной? Возникает надежда, что посредством математического моделирования можно выявить эволюционную ось, пронизывающую наблюдаемое разнообразие космических образований, построить эволюционное древо, объясняющее это разнообразие.

Дискретность возможных структур организации – это то общее, что связывает мир живого и неживого. Системы живого открыты и в высокой степени нелинейны, поэтому их ответ на внешнее воздействие может быть многократно сильнее (или слабее) величины этого внешнего воздействия и вообще качественно различным в разных ситуациях. Нелинейность накладывает определенные ограничения на типы структур живого. Не все, что угодно, возможно в качестве метастабильно устойчивого в нелинейном мире. Нелинейность квантует, делает дискретными возможные наборы движений, поз, жестов живых существ.

Все, даже наиболее сложные структуры живого, строятся на некой общей основе. Существует особый «архитектурный каркас», некий универсальный «кирпич» для всех параметрических структур.

Природа имеет внутренние предпочтения к определенным формам живого и неживого. Только определенные наборы форм осуществимы в природных средах. А на другие формы наложен эволюционный запрет.

Структуры-аттракторы как непроявленное

Относительно устойчивые структуры, на которые неизбежно выходят процессы эволюции в открытых и нелинейных средах (системах), называются аттракторами.

Простейшие математические модели нелинейных открытых сред свидетельствуют, что открытая нелинейная среда (система) таит в себе определенные формы организации. Структуры-аттракторы потенциально заложены в среде (системе), определяются сугубо ее собственными нелинейными свойствами. Они определяют тенденции процессов в ней.

Результаты синергетики как бы возвращают нас к идеям древних о потенциальном и непроявленном. В частности, они близки к представлениям Платона о неких первообразцах и совершенных формах в мире идей, уподобиться которым стремятся вещи видимого, всегда несовершенного мира. Или же к представлениям Аристотеля об энтелехии, о некой внутренней энергии, заложенной в материи, вынуждающей ее к обретению определенной формы.

«Вещи скрываются от самих себя», – говорит Гадамер. Эта потенциальность как оборотная сторона бытия присуща и миру человеческому, и миру неживой природы. И в среде плазмы, и в живом веществе, и на поле человеческого сознания, и в теле культуры или в среде научного сообщества есть свои внутренние тенденции, стремления или «предпочтения». И лишено смысла им противиться.

Поставленные в определенные условия, мы всякий раз реализуем одну из возможных форм организации, одну из потенциальных структур, не какую угодно, а адекватную одной из форм самоструктурализации системы.

Стареют ли атомы?

В квантовой механике утверждается неразличимость, тождественность всех элементарных частиц одного сорта, а равным образом и атомов. Предполагается, что все микрообъекты одного типа одинаковы, поэтому нельзя отличить, скажем, один фотон от другого или один атом водорода от другого атома водорода.

Синергетический взгляд на мир – взгляд эволюционный. Эволюция имеет сквозной характер. Она пронизывает все уровни организации неживого и живого. Нынешняя эра эволюции Вселенной связана с разлетом галактик. С эволюционной точки зрения можно попытаться подойти и к атому. Тогда и на атомном уровне организации мира можно усмотреть аналоги жизни и даже аналоги истории.

Можно подойти к пониманию квантовомеханической реальности, решая классическую задачу, квазилинейное уравнение теплопроводности с нелинейным источником. В таком случае может быть предложена модель атома как структуры горения нелинейной среды.

Модель водородоподобного атома описывается уравнением теплопроводности с распределенной плотностью и источником. Автомодельное распределение имеет некие неоднородности температуры, соответствующие устойчивым состояниям (уровням) атома. В данной задаче есть горение, теплопроводность (рассасывающий неоднородности фактор) и заданное распределение плотности. На квазистационарной стадии распределение температуры практически не меняется.

Но если рассматривать большие промежутки времени, выходить за пределы квазистационарной стадии, то обнаруживаем, что «волны горения» сходятся, сбегаются к центру, к аналогу ядра атома. «Жизни» атома соответствует LS-режим с обострением, режим «сбегающейся волны», когда интенсивность процесса увеличивается во все более узкой области у центра.

Взгляд на атом как на локализованный квазистационарный процесс в среде, имеющий сложную структуру, плодотворен, ибо он позволяет объяснить некоторые факторы, к примеру, эффект красного смещения.

До сих пор предполагается, что ряд различных факторов может порождать феномен красного смещения.

  • Во-первых, согласно привычному, наиболее распространенному толкованию, этот феномен может быть обусловлен фактором разлета галактик, «разбегания всего от всего» на нынешней стадии эволюции Вселенной, сопровождающимся эффектом Доплера.
  • Во-вторых, некоторые ученые придерживаются той версии, что за эффект «покраснения квантов» может быть ответственно временное изменение квантов излучения, «старение» квантов.
  • В-третьих, в рассматриваемой нами модели этот эффект может быть обусловлен фактором «старения» самих атомов. Здесь все построено на эволюции во времени, в том числе и атом может представлять собой меняющуюся во времени организацию.

Свет от галактик, которые находятся на значительных расстояниях от нас, доходит до нас за огромные промежутки времени. Мы видим эти галактики в прошлом, такими, какими они были миллионы лет тому назад. Это далекое прошлое, свидетельства о котором к нам попадают со все более дальних расстояний, соответствует, с нашей точки зрения, ранним стадиям эволюции атомов. Уровни тех атомов, свет от которых мы наблюдаем, должны были быть дальше от центра, а затем они медленно приближаются к ядру. По мере ухода в прошлое мы наблюдаем атомы, энергетические уровни которых расположены все дальше от ядра. А это эквивалентно красному смещению.

В принципе, можно получит значение константы красного смещения, исходя из тех констант нелинейной среды, которые мы получили, моделируя атом как сходящиеся волны горения в LS-режиме. При таком подходе не разлет галактик, а «старение» атомов могут приводить к эффекту красного смещения.

Рост и расширение масштабов Вселенной может означать, что на макроуровне в отличие от микроуровня есть HS-режим (режим снижения интенсивности) растяжения всех масштабов. Причем масштабы могут расширяться, даже если галактики не имеют никакой механической скорости. Они могут расширяться из-за «разбухания самого пространства», из-за HS-режима охлаждения. Для внешнего наблюдателя картина выглядит так, как будто галактики разлетаются с большой скоростью.

Наноиндустрия - вектор развития

НАНОИНДУСТРИЯ - ВЕКТОР РАЗВИТИЯ
М.А. Ананян - доктор технических наук, Генеральный директор Концерна "Наноиндустрия"


Дамы и господа! Уважаемые коллеги!

Для всех нас, находящихся в этом зале, год 2007 ознаменован тем, что Президентом России провозглашена стратегическая линия на создание отечественной наноиндустрии.

Это означает, что все наши усилия по формированию общественного мнения, созданию наноинформационного пространства, региональных центров наноиндустрии, изданию журналов, наконец, проведению научно-практических конференций, посвященных реальному применению нанотехнологий, были не напрасны.

Однако на фоне всеобщего ликования и эйфории от объявленных масштабов госбюджетных вливаний в это научно-техническое направление, пора переходить к деловой рабочей программе действий.

Для этого необходимо обсудить сильные и слабые стороны процесса развития нанотехнологий в России. Сильные перечислить легко, так как, в первую очередь, наша страна богата замечательно талантливыми людьми, умеющими решать сложные технические задачи даже в условиях, далеких от комфортных.

Другой нашей важной особенностью является специфическая российская ментальность, связанная с пока еще не изжитыми традициями базового фундаментального образования, которая позволяет значительному числу специалистов подняться до уровня системного осмысления и понимания проблем нанотехнологий.

Наконец, к самым существенным компонентам процесса создания отечественной наноиндустрии относится сохранившийся еще кадровый потенциал специалистов высшей квалификации – носителей технологий, что является гарантией передачи опыта и знаний молодому поколению специалистов.

Теперь о слабых сторонах процесса. С нашей точки зрения, самым слабым местом является то, что буквально до последнего времени государством не был определен вектор практической организации работ в области нанотехнологий. Триада, о которой мы все время твердили, то есть, естественный путь перехода от исследований и разработок к промышленному производству и затем –

к потребительскому рынку никем всерьез не рассматривалась и к реализации не планировалась. Были лишь вежливые поклоны и прописанные в официальных документах декларации о практическом использовании нанотехнологий.

Это очень сильно влияло и влияет на психологический настрой научного и инженерного сообщества

Не секрет, что в настоящее время в сфере нанотехнологий большинство государственных организаций, да и бизнес-структур сидит на бюджетной "игле". И в этом проблема. Бюджетная "игла" приводит к тому, что в итоге большинства наноисследований и разработок рождаются публикации, отчеты, в лучшем случае какие-то образцы, иногда патенты. Сегодня, когда объявлено о баснословных суммах, направляемых на развитие нанотехнологий, все в еще большей степени хотят припасть к бюджетным источникам. Однако мало что делается для того, чтобы результаты исследований и разработок превратились в продукцию, востребованную на потребительском рынке. Потому что именно рынок создает независимый от бюджета источник финансирования и в случае его успешного освоения будет не только преодолен иждивенческий стереотип поведения множества, в том числе и весьма солидных организаций, а также работающих в них специалистов, но, самое главное, государство, сняв с себя значительную часть затрат на "прокормление", сможет направить освободившиеся ресурсы на создание того технологического базиса, без которого говорить о прогрессе нанотехнологий в России совершенно бессмысленно.

Действительно, сегодня звучат слова о спецтехнологическом оборудовании, метрологическом обеспечении, приборах для научных исследований. Однако же в большинстве случаев речь идет о закупке оборудования и приборов за рубежом, при этом небольшая номенклатура оборудования и приборов отечественного производства предлагается, а иногда и навязывается по неоправданно завышенным ценам. Благо деньги-то у потребителя – бюджетные.

Но важно другое. Государственными чиновниками и выступающими рядом с ними в качестве экспертов отдельными представителями науки даже не поставлена задача формирования программы по созданию функционально полной системы отечественного спецтехнологического и измерительного оборудования, развития российского научного приборостроения.

Возникает естественный вопрос – а что мы будем делать через 3-5 лет, когда закупленное за рубежом оборудование устареет? Снова бездумно тратить бюджетные средства?

Мы потеряли много времени на старте нанотехнологий. Надо отдавать себе отчет, что имеющийся в России технологический базис для развития наноиндустрии несравненно слабее того, что имеется, например, в США, Японии или странах ЕС. Поэтому, заявляя публично о включении России в мировую нанотехнологическую гонку, следует понимать, что при существующих стартовых позициях никакими деньгами, без коренного изменения сложившейся в сфере нанотехнологий системы организации работ, упущенное время не вернуть.

Есть еще один вопрос, непосредственно связанный с потребительским рынком. Всем известно, что в Россию из-за рубежа поставляется все больше продукции, сделанной с использованием нанотехнологий. Пока это не очень сильно ощущается, но процесс освоения российского рынка начался. И может статься, что через несколько лет наш рынок, также как и автомобильный, в значительной степени будет монополизирован зарубежными компаниями.

У нас же, напротив, не объявленная, а реальная государственная политика в сфере инноваций приводит к постоянному затягиванию процесса "индустриализации" нанотехнологий. Никто не озадачен созданием условий для того, чтобы Россия имела свою нишу на мировом рынке нанопродукции. Наоборот, те условия, в которые мы сегодня поставлены (связанные с экспортным контролем, таможней и т.д.), всячески этому препятствуют. И может оказаться, что через 4-6 лет Россия в этом секторе международного рынка будет уже никому не нужна.

Еще одна наша слабая сторона заключается в том, что в настоящее время внутренний рынок продукции нанотехнологий в стране не сформирован. И в этом Россия, как минимум, на 7-10 лет отстает от технологически развитых стран. Сложившаяся ситуация связана, в частности, с тем, что классическая модель инновационного развития, основанная на стимулирующей роли рынка в запуске процесса инноваций в производство, в условиях России так и не заработала. Крупные государственные и частные предприятия-производители не заинтересованы в использовании передовых отечественных разработок, так как им выгоднее использовать хоть и устаревшие, но готовые для практического внедрения зарубежные технологические и технические достижения, а малые и средние предприятия – не имеют для инновационного развития достаточных финансов и ресурсов.

В этих условиях представляется, что процесс создания базиса наноиндустрии, организации производства и внедрения продукции должен развиваться в нескольких направлениях.

Во-первых , необходимо кардинально изменить сам подход к формированию и, самое главное, к осуществлению программных мероприятий, который в настоящее время сводится к сбору предложений от разработчиков проектов и отбору из них наиболее привлекательных, которые выставляются на конкурс. Полученная в результате таких проектов продукция, как правило, не находит реального потребителя. Но дело даже не в этом. Отдельные проекты решают, возможно, и важные, но частные задачи

2

Необходимо создание самого механизма запуска инновационного процесса. И именно нанотехнологии как раз дают такой шанс для экономики и перспективного развития России. Поэтому принципиально важно проведение анализа задач и проблем конкретных предприятий и отраслей промышленности, других секторов экономики и социальной сферы (сельское хозяйство, строительство, медицина, образование и т.д.), что позволит выделить те позиции, где использование нанотехнологий и нанопродукции даст конкретный научно-технический и экономический эффект. Такой анализ будет способствовать расстановке приоритетов в развитии нанотехнологий, сократит финансовые издержки, распыление материальных и людских ресурсов.

Во-вторых , представляется целесообразным организовать предметную работу в различных регионах России с предприятиями и организациями, решающими проблемные, важные для страны вопросы, разрабатывающими и производящими наиболее ответственные образцы техники. Таковыми являются,

в первую очередь, структуры оборонно-промышленного комплекса. На их основе можно отработать механизмы промышленного внедрения уже существующей продукции нанотехнологий, а также создания новой продукции, реализованной в соответствии с сформулированными ими техническими требованиями. Такая работа и в Москве, и в регионах уже начата.

Полученный при этом опыт может быть в дальнейшем использован в рамках широкомасштабной акции по переводу отечественной экономики на инновационный путь развития. Мультиплицирование такого опыта можно осуществить через создание "точек роста" - инновационных кластеров двух типов: региональных и отраслевых

В частности, сегодня по инициативе ЗАО "Концерн "Наноиндустрия" более чем в 20 регионах России организуются Региональные центры наноиндустрии , задачами которых являются:

  • инвентаризация осуществляемых в регионе работ и проектов в сфере нанотехнологий;
  • участие в создании коллективного информационного пространства в области нанотехнологий и нанопродукции;
  • внедрение достижений нанотехнологий на предприятиях регионов.

При этом следует отметить, что региональные центры наноиндустрии, пользуясь поддержкой местных администраций, опираясь на множественные научно-технические и организационные связи в своих регионах, дополняя друг друга, образуют многоуровневую сетевую структуру . Поэтому каждый из них может активно использовать не только собственные достижения, но и весь спектр технологий, представленный и постоянно пополняемый в пределах коллективного информационного пространства.

Вопросы организации отраслевых инновационных кластеров сегодня также находятся в стадии обсуждения в рамках авиационных предприятий,

ОАО "Российские железные дороги", агропромышленного комплекса, Российских ассоциаций станкостроения, водоснабжения и водоотведения и т.д.

Весьма важным представляется и то, что приобретение опыта практической деятельности, связанной с созданием завершенных разработок, внедрением на рынок нанокомпонентов и систем, созданных на их основе, даст возможность достаточно быстро сформировать высокопрофессиональные коллективы специалистов , которые сегодня практически отсутствуют.

В-третьих , следует признать целесообразным создание консорциумов, ориентированных на решение технологических задач определенной тематической направленности . Так, например, Белгородским технологическим университетом объявлено о создании консорциума, ориентированного на использование нанотехнологий при создании нового поколения строительных материалов. Нижегородский региональный центр наноиндустрии совместно с двумя десятками предприятий и организаций позиционирует себя в части нанокерамики. Буквально на днях НИАТ совместно с НИИ Измерения, концерном "Наноиндустрия" и рядом других организаций подписали соглашение о создании Научно-инженерного центра прецизионных измерительных систем и приборов. И Центр этот является открытой системой, то есть, мы приглашаем к участию в его работе всех желающих.

Такие структуры могут развиваться, например, в форме частно-государственного партнерства, в основу стратегии которого должна быть также положена концепция "точек роста", определяющая выбор приоритетных направлений в сфере внедрения нанотехнологических инноваций, прежде всего, на предприятиях консорциума, а затем и на других заинтересованных предприятиях. В этом случае государство, выступая заказчиком разработок, получит инновационные проекты, готовые к привлечению инвестиций на конкурсной основе или на основе частно-государственного партнерства, результат которых – организация высокотехнологичных производств, создание новых площадок по внедрению и продажам конкурентоспособной продукции на российском и зарубежном рынках.

Системный подход и структурирование деятельности таких консорциумов в части отбора инновационных проектов, внедрения инноваций в производство и вывода новой продукции на рынок позволит уже в среднесрочной перспективе запустить реальные механизмы коммерциализации нанотехнологических достижений и привлечь средства частных, в том числе, и зарубежных инвесторов, оптимизировав тем самым государственные расходы.

Таким образом, развитие и внедрение нанотехнологий есть сугубо системная задача. И решать ее должны специалисты-системщики. Более того, многофакторность нанотехнологии выделяет ее как специфическую область междисциплинарных научных и инженерных знаний . Поэтому вопрос подготовки соответствующих научных, инженерных и рабочих кадров требует разработки нетрадиционных специальных образовательных программ разного уровня. Это курсы лекций, лабораторные работы и учебные пособия для специалистов, желающих получить второе высшее образование. Затем – то же самое – для переподготовки и повышения квалификации преподавательского состава. Следующий уровень – студенты, начиная с третьего курса. И, наконец – факультативы для школьников, учащихся техникумов и ПТУ с максимально возможным внесением элементов нано в учебные программы по физике, химии, биологии, информатике

По существующим прогнозам, потребность в специалистах в области нанотехнологии в 2010 - 2015 годах будет не менее: 0,8 ? 0,9 млн. человек в США, 0,5 ? 0,6 млн. – в Японии, 0,3 ? 0,4 млн. – в Европе, 0,1 ? 0,2 млн. – в Тихоокеанском регионе, около 0,1 млн. – в других странах. Россия в этих прогнозах никак не представлена.

Давайте посмотрим, как мы сами себя позиционируем.

В правой части слайда приведены данные из самого последнего варианта Программы развития наноиндустрии в РФ до 2015 года, подготовленного Министерством образования и науки РФ для утверждения в Правительстве. Обратите внимание на цифры - 23,5 тыс.чел., то есть, примерно в 35-40 раз меньше, чем в США и в 15-20 раз меньше, чем в странах ЕС. Вот где уже сегодня закладывается наше стратегическое отставание!

Точно также обстоит дело с прогнозируемыми объемами патентования

Менее 100 международных патентов за 8 лет! О каком паритете, а тем более опережающем развитии можно в этом случае говорить?

Мы сильно опоздали с введением в программы ВУЗов двух специальностей – "Нанотехнологии в электронике" и "Наноматериалы". Вместе с тем, важность проблемы форсированной подготовки кадров трудно переоценить.

К сожалению, существующая практика лицензирования тормозит возможность получения образования в области нанотехнологий, прежде всего, дипломированными специалистами, учащимися школ, техникумов и ПТУ, а также студентами естественнонаучных и инженерных "непрофильных" ВУЗов. Хотя пора бы понять, что для нанотехнологий нет "непрофильных" ВУЗов и перечень лицензируемых специальностей по направлению "Нанотехнология" уже давно должен быть существенно расширен.

Не менее важно и другое. Развитие нанотехнологий будет в значительной степени зависеть от создания своего рода "спецназа", то есть групп высококвалифицированных специалистов, обладающих знаниями в таких областях, как физика, химия, биология, медицина, прикладная и вычислительная математика, электротехника, материаловедение, машиностроение. Подготовка такого рода специалистов-системщиков – серьезная задача, которая практически не решается нашими высшими учебными заведениями, поскольку они до сих пор придерживаются достаточно строгого деления на специальности.

Вопрос о необходимости кардинального изменения в образовательной системе в части подготовки кадров для нанотехнологий назрел уже давно. При этом следует учесть, что образование в сфере нанонауки и нанотехнологий, необходимость получения практических навыков в наноконструировании требуют специальных лабораторных условий. И мы снова вынужденно обращаемся к вопросу об отсутствии государственной технической политики в части разработки и производства отечественного спецтехнологического оборудования, парка научных приборов, метрологического обеспечения, что, безусловно, должно быть отнесено к числу важнейших и упущенных сегодня приоритетов.

ВЕКТОРЫ РАЗВИТИЯ

Практика показала, что неформальное сотрудничество научных, инженерных, производственных групп специалистов обладает взрывным синергетическим эффектом, обогащая каждого из участников новыми возможностями, новыми подходами к решению стоящих перед ними задач, идеями, почерпнутыми из общения с коллегами.

Естественным продолжением сложившейся кооперации Региональных центров наноиндустрии, Торгово-промышленной палаты РФ, отраслевых и академических институтов, промышленных и малых предприятий стало учреждение в ноябре 2006 г. Национальной ассоциации наноиндустрии

Задачами ассоциации являются:

  • создание на территории России цивилизованного рынка нанотехнологий;
  • защита интересов разработчиков, производителей и потребителей нанопродукции;
  • организация единого информационного пространства для развития прикладных направлений нанотехнологий и производств на их основе;
  • создание условий для реализации инновационных нанопроизводств в сфере малого предпринимательства;
  • содействие продвижению нанотехнологий и нанопродуктов российских предприятий и организаций на мировой рынок.

После долгих бюрократических проволочек в Министерстве юстиции РФ Национальная ассоциация наноиндустрии в январе 2008 г. начинает свою активную деятельность. В частности, в ее планах:

  • создание сетевой структуры обмена информацией для членов ассоциации;
  • организация межрегиональных технологических цепочек для производства востребованной на потребительском рынке продукции наноиндустрии;
  • анализ и проведение мониторинга задач и проблем развития промышленных предприятий, других секторов экономики с целью выбора тех направлений внедрения, где использование нанотехнологий приводит к изменению качественных показателей производства;
  • организация, с целью обмена опытом, тематических семинаров, посвященных отдельным направлениям развития и внедрения нанотехнологий и т.д.

Со своей стороны, ЗАО "Концерн "Наноиндустрия" считает важным развитие следующих направлений деятельности

  1. Повышение эффективности и юридического статуса Региональных центров наноиндустрии, организация отраслевых инновационных кластеров, участие в консорциумах тематической направленности (строительные технологии, наномедицина, нанотехнологии для АПК и т.д.).
  2. Формирование, совместно с Департаментом науки и технической политики, Московским комитетом по науке и технологиям, Московского центра наноиндустрии, отработка механизма внедрения нанотехнологий и нанопродукции на промышленных предприятиях, в топливно-энергетическом и транспортном комплексах, а также жилищно-коммунальном секторе городского хозяйства.
  3. Участие в организации работ по оценке рисков, связанных с воздействием наночастиц на окружающую среду и здоровье человека; создание стандартов безопасности и специализированной аппаратуры.
  4. Участие в создании и реализации программы по ресурсосбережению, утилизации промышленных отходов, глубокой переработке природных ресурсов с целью создания высокорентабельной сырьевой базы, необходимой для развития наноиндустрии. В рамках этой задачи особое значение приобретает разработка технологий утилизации продукции, созданной непосредственно с использованием нанотехнологий. Полагаю, что этот вопрос должен быть решен в законодательном порядке, так как не хотелось бы возвращаться к тем проблемам, с которыми мы столкнулись при проведении конверсии военного производства.
  5. Развитие идеи междисциплинарности нанотехнологий в направлении математического моделирования нанотехнологических процессов и наноструктур и создание на этой основе специализированных дизайн-центров, что позволит не только перейти от эмпирики к осмысленному наноконструированию, но и расширить интеллектуальный базис нанотехнологий за счет активного вовлечения в этот процесс талантливых российских математиков и программистов.
  6. Организация просветительской деятельности с учетом того, что в ближайшей перспективе нанотехнологии окажут огромное влияние на экономический рост, стандарты жизни, компетентность общества. Поэтому, кроме продвижения в новых технологических решениях, существует необходимость в глубокой информированности населения всех возрастных категорий и всех уровней образования о возможностях нанотехнологий и, таким образом, в подготовке его к адекватному восприятию воздействия нанотехнологий на социальные аспекты жизни общества, экономику, этику, законодательство, культуру, здравоохранение и образование.

Кроме того, более полная информированность о нанотехнологиях будет формировать у населения и, прежде всего, молодежи стремление к получению специальных знаний в этой области. Образование в области нанонауки и нанотехнологии может помочь:

  • вырастить новое поколение исследователей-новаторов;
  • обеспечить рабочий и технический персонал будущего современными и перспективными технологическими навыками;
  • заинтересовать руководителей производств возможностями, которые дает внедрение нанотехнологий;
  • подготовить население к принятию взвешенных решений в постоянно меняющемся обществе.

До настоящего времени информация, связанная с применением нанотехнологий в России, доходит до населения в очень ограниченных объемах через СМИ и специализированные выставочные экспозиции. Информация, распространяемая научным сообществом, также носит специальный характер и не затрагивает социальных аспектов применения нанотехнологий. Эти способы передачи нанотехнологических знаний населению не могут считаться достаточными. Необходимо вести поиск и других путей и методов просвещения, что тем более важно при обсуждении животрепещущих вопросов, касающихся клонирования животных и человека, создания генно-модифицированных продуктов, влияния наночастиц на среду обитания человека и его здоровье.

В заключение я хотел бы остановиться на том, что одинаково важно для всех нас

Сегодня человечество находится на пороге глобальных вызовов, угрожающих самому его существованию. В их числе: проблема глобального потепления, истощение традиционных энергетических ресурсов, нарастающий дефицит чистой питьевой воды, терроризм, военное противостояние цивилизаций, негативное влияние окружающей среды на здоровье человека.

Эта ситуация непосредственно затрагивает геополитические интересы России, и именно с этих позиций необходимо рассматривать всю проблематику нанотехнологий.

Нанотехнологии могут явиться благом для человечества за счет создания принципиально новой материальной базы, большего количества пищи, энергии, доступных водных ресурсов, новых возможностей медицины.

Вместе с тем, их потенциал способен изменить мировую энергосистему, осуществить переворот в экономике, политике, вооруженных силах государств.

В частности, решающее влияние на изменения в социальной сфере окажет нанотехнологическая альтернатива традиционным энергоресурсам. Возрастание эффективности сбора солнечной энергии, водородная энергетика, извлечение энергии из вещества – это только некоторые из возможных дополнительных, а впоследствии и преобладающих, источников энергоресурсов, внедрение которых напрямую связано с успехами в развитии нанотехнологий.

Разные страны располагают теми или иными запасами нефти, газа, угля. Можно перекрыть нефтяную или газовую трубу, но трудно представить себе, что одна страна может помешать другой иметь доступ, например, к энергии солнца. Нанотехнологии позволят каждой стране иметь столько ресурсов, сколько ей необходимо. Поэтому структура мирового хозяйства будет кардинально меняться с безусловным снижением значимости ресурсодобывающих стран.

Освобождение человека от ресурсозависимости приведет к важным социальным последствиям. Миллионы людей вынуждены будут сменить профессию или остаться безработными, изменится геополитическая карта мира.

Очень важным является вопрос, насколько общество психологически готово принять нанотехнологическую революцию, как совершающийся факт, насколько оно располагает кадровым потенциалом для эффективного участия в этом процессе. Существенная роль в психологической подготовке общества, безусловно, принадлежит средствам массовой информации.

Точно также, нанотехнологии могут стать и причиной серьезных конфликтов, в том числе, вооруженных. Сложившаяся в мире геополитическая ситуация в значительной степени опирается на созданную систему глобального контроля уровня вооружений и военной техники технологически развитых стран. Сегодня разработку и накопление оружия массового уничтожения можно обнаружить и вопреки желанию государства-хозяина. В случае же нанотехнологий, контроль практически невозможен, в крайнем случае, весьма проблематичен.

Машины, способные делать необходимые операции с атомами, уже создаются. Закладываются основы технологий атомной и молекулярной сборки и самосборки для использования в электронике, связи, оптике, робототехнике. Испытана в Афганистане система Smart dust ("умная" пыль). Ведутся работы по созданию "маломощного" ядерного оружия с использованием элементов нанотехнологий, нано- и пикоспутников, появление которых может значительно скорректировать существующие военные доктрины.

Поэтому представляется, что развитие нанотехнологий в целом, а особенно, систем вооружения и военной техники, безусловно, относится к числу важнейших конвенциальных проблем, которые должны быть сформулированы и рассмотрены на самых высоких уровнях уже сегодня, чтобы своевременно найти необходимые политические решения. И Россия должна иметь на этом поле достойный для равноправных переговоров потенциал.

Введение в физику открытых систем

ВВЕДЕНИЕ В ФИЗИКУ ОТКРЫТЫХ СИСТЕМ
Ю.Л. Климонтович
Московский государственный университет им. М.В. Ломоносова


I. НЕМНОГО ИСТОРИИ

При рассмотрении основных идей и понятий нового научного направления естественно начать с краткого изложения истории вопроса. Возникновение физики открытых систем было подготовлено трудам» многих выдающихся исследователей девятнадцатого столетия. В их числе физик Людвиг Больцман, математики Анри Пуанкаре и Александр Ляпунов и, конечно, биолог Чарльз Дарвин.

Людвиг Больцман назвал XIX столетие веком Дарвина. Он полагал тем самым, что теория эволюции Дарвина, основанная на принципе естественного отбора, является наиболее значительным открытием прошлого века. Такой вывод может показаться неожиданным. Действительно, XIX век очень богат великими открытиями в естествознании, в частности в физике. Ведь XIX век - это век термодинамики, созданной в значительной мере трудами. Сади Карно, Рудольфа Клаузиуса и Вильяма Томсона. Это век электромагнитной теории Майкла Фарадея и Джеймса Максвелла.

В XIX веке были заложены и основы современной молекулярно-кинетической теории материи. Одним из ее основателей был сам Людвиг Больцман. Именно он предложил первое кинетическое уравнение для описания необратимых процессов в газах. Оно описывает, в частности, установление равновесного состояния в газе. Больцман ввел впервые и статистическое определение энтропии. Он доказал и знаменитую Я-теорему, согласно которой в процессе установления равновесного состояния энтропия монотонно возрастает и остается постоянной при его достижении. Наконец именно Больцман понял, что в замкнутых системах энтропия может служить мерой относительной степени хаотичности. И все же именно Больцман определил XIX век как век Дарвина. Тем самым на первое место он поставил принцип биологической эволюции.

В чем же дело? Ведь во времена Больцмана не существовало каких-либо математических моделей биологической эволюции. Основным движущим фактором была уверенность Больцмана в том, что развитая им теория временной эволюции газа в замкнутой системе будет обобщена и на открытые системы. К числу последних, относятся и все биологические объекты. Теория эволюции Дарвина и была, таким образом, первым шагом в теории эволюции открытых систем. Больцман был одним из немногих в то время, кто понял важность этого "первого шага". Такую точку зрения в то время разделяли не многие. Да и сама теория Больцмана вызвала возражения у большинства ученых того времени. Вокруг теории Больцмана бушевали страсти. Среди его оппонентов был и величайший математик того времени Анри Пуанкаре. Он полностью отвергает теорию Больцмана.

Для иллюстрации приведем небольшой отрывок из книги И. Пригожина [1] "От существующего к возникающему": "Пуанкаре в одной из своих работ открыто не рекомендовал изучать труды Больцмана на том основании, что ПОСЫЛКИ в рассуждениях Больцмана противоречат его, Пуанкаре, выводам!" Пуанкаре, основываясь на обратимых уравнениях механики, пришел к выводу, что теория необратимых процессов и механика несовместимы. Основанием служило, в частности, то, что в механике нет функции, играющей роль энтропии. Известно и другое высказывание Пуанкаре, приведенное в одной из статей И. Пригожина: "В этой связи забавно вспомнить слова Пуанкаре о том, что рекомендовать кому-либо прочитать работу Больцмана он не может, так как не может рекомендовать изучение доказательств, в которых выводы противоречат предпосылкам"

Как разительно отличается от оценки Пуанкаре оценка работ Людвига Больцмана, данная представителем следующего поколения ученых, одним из основателей квантовой механики — Эрвином Шредингером. На стр. 161 той же книги [1] Пригожина читаем: "Его (Больцмана) направление мышления можно было бы назвать моей первой любовью. Никакие идеи не захватывали меня столь глубоко и вряд ли смогут захватить меня в будущем." Таким образом, уже на пороге XX столетия стало ясно, что развитие теории неравновесных процессов в физических и биологических системах является одной из важнейших задач естествознания. Оказалось, однако, что от понимания важности проблемы до ее даже далеко не полного решения потребовалось почти целое столетие.

Первым принципиальным шагом в этом направлении была развитая Альбертом Эйнштейном, Марианом Смолуховским и Полем Ланжевеном теория броуновского движения — хаотического движения малых, но все же макроскопических частиц в жидкости. Его причиной являются толчки со стороны молекул жидкости. Таким образом, система броуновских частиц представляет пример открытой системы. Теория броуновского движения была развита в начале текущего столетия и сразу степа рабочим инструментом при рассмотрении многих физических явлений. Однако лишь по прошествии более полувека в статистической теории открытых систем были сделаны последующие принципиальные шаги. Для этого понадобились новые идеи, новые образы и понятия: самоорганизация, синергетика, физика открытых систем. Об этом и пойдет речь ниже. Здесь же отметим следующее.

Большую роль в теории открытых систем играют работы A.M. Ляпунова — одного из создателей теории устойчивости движения, математика А.Н. Колмогорова, физиков Л.И. Мандельштама, А.А. Андронова, Н.С. Крылова, Я.Б. Зельдовича и многих других. К числу основоположников теории самоорганизации относится, несомненно, Владимир Иванович Вернадский — создатель учения о ноосфере (сфере разума).

Приступим теперь к изложению основного материала. По мере продвижения вперед мы снова будем делать краткие экскурсы в историю.

II. ФИЗИКА ОТКРЫТЫХ СИСТЕМ. ДИССИПАТИВНЫЕ СТРУКТУРЫ. СИНЕРГЕТИКА

Из названия следует, что речь пойдет об открытых системах, которые могут обмениваться с окружающими телами энергией, веществом и, что не менее важно, информацией. Здесь будут рассматриваться макроскопические открытые системы. Они состоят из многих объектов, принимаемых за элементы структуры. Эти элементы могут быть микроскопическими, например, атомы или молекулы в физических и химических системах. Они, однако, могут быть малыми, но все же макроскопическими. Это, например, макромолекулы в полимерах, клетки в биологических структурах. Они могут быть и не малыми телами, например "элементарные" объекты в социологии.

Именно благодаря сложности открытых систем в них возможно образование различного рода структур. При этом вся диссипация играет при образовании структур конструктивную роль. Это кажется, на первый взгляд, удивительным, так как понятие диссипации ассоциируется с затуханием различного рода движений, с рассеянием энергии, с потерей информации. Однако, и это чрезвычайно существенно, диссипация необходима для образования структур в открытых системах.

Чтобы подчеркнуть это обстоятельство, Илья Пригожий ввел термин "диссипативные структуры". Это чрезвычайно емкое и точное название объединяет все виды структур: временные, например автоколебания в генераторе, пространственные, напри мер ячейки Бенуара на поверхности жидкости, и. наконец, наиболее общие пространственно-временные структуры. Примером последних могут служить автоволны на поверхности жидкости. Сложность открытых систем предоставляет широкие возможности для существования в них коллективных явлений. Чтобы подчеркнуть роль коллектива, роль кооперации при образовании диссипативных структур, Герман Бакен ввел термин синергетика, что означает совместное действие.

Синергетика - не самостоятельная научная дисциплина, но новое междисциплинарное научное направление; цель синергетики — выявление общих идей, общих методов и обшиб закономерностей в самых разных областях естествознания, а также социологии и даже лингвистики; более того, в рамках синергетики происходит кооперирование различных специальных дисциплин.
Синергетика родилась на базе термодинамики и статистической физики. Слово "физика" в названии этой статьи подчеркивает, что в основе теории открытых систем лежат фундаментальные физические законы.

III. ДЕГРАДАЦИЯ И САМООРГАНИЗАЦИЯ В ПРОЦЕССАХ ЭВОЛЮЦИИ

Эволюция - это процесс изменения, развития в природе и обществе. Такое понятие является очень общим. В физических замкнутых системах эволюция во времени приводит к равновесному состоянию. Ему отвечает, как показал впервые Больцман на примере разреженного газа, максимальная степень хаотичности. В открытых же системах можно выделить два класса эволюционных процессов.

  • Временная эволюция к равновесному (неравновесному, но стационарному) состоянию.
  • Процесс эволюции идет через последовательность неравновесных стационарных состояний открытой системы. Смена стационарных состояний происходит благодаря медленному изменению так называемых управляющих параметров.

Теория эволюции Дарвина основана на принципе естественного отбора. При этом эволюция может вести либо к деградации, либо представлять собой процесс самоорганизации, в ходе которого возникают более сложные и более совершенные структуры. Самоорганизация является, таким образом, не единственным результатом эволюции. Ни в физических, ни даже в биологических системах не занижено "внутреннее стремление" к самоорганизации. Физическим примером деградации может служить временная эволюция к равновесному состоянию замкнутой системы.

Таким образом, самоорганизация - лишь один из возможных путей эволюции. Для ответа на вопрос, по какому пути будет развиваться процесс, надо иметь критерии самоорганизации. При этом нет необходимости давать определения таких фундаментальных понятий, как деградация и самоорганизация. Такие определения очень трудны и, что существенно, не однозначны. Более важным является сравнительный анализ относительной степени упорядоченности (или хаотичности) различных состояний рассматриваемой открытой системы. Только такой анализ может дать ответ на вопрос: является ли рассматриваемый в открытой системе процесс эволюции самоорганизацией или деградацией?

Мы уже использовали понятия хаос и порядок. Как же отличить порядок от хаоса? В ряде случаев такое отличие представляется очевидным. Однако сравнение, например, ламинарных и турбулентных течений показывает, что кажущийся очевидным вывод может оказаться все же неправильным. Для получения более обоснованных ответов и нужны, как уже говорилось, количественные критерии относительной степени порядочности (или хаотичности) различных состояний открытых систем.

Результаты такого анализа объективны и дают дополнительную информацию. Основная информация состоит в установлении некоторой "нормы хаотичности", а также в установлении отклонений от нормы (в ту или иную сторону) под влиянием тех или иных воздействий. В биологии это могут быть различные стрессы, которые и вызывают отклонения степени хаотичности от нормы. При этом отклонения в ту и другую стороны могут означать "болезнь" и, следовательно, представлять собой процесс деградации.

Таким образом, далеко не всегда констатация (по выбранному критерию) уменьшения степени хаотичности означает наличие самоорганизации и, наоборот, констатация увеличения степени хаотичности означает наличие деградации. Такие выводы правомерны только в тех открытых физических системах, когда за начало отсчета степени хаотичности можно принять состояние теплового равновесия. В такой открытой системе, как, например, генератор электрических колебаний, равновесному состоянию, то есть состоянию при нулевой обратной связи, отвечают тепловые колебания в электрическом контуре.

Поскольку нормальное функционирование организма возможно лишь при некоторой норме хаотичности, которая отвечает существенно неравновесному состоянию, то указанной выше точки отсчета здесь не существует. По этой причине в биологии, а также, конечно, в экономике и социологии объективная информация об изменении степени хаотичности еще недостаточна, чтобы делать вывод о наличии процесса самоорганизации или деградации.

Здесь целесообразна другая классификация. Если удается установить для данной системы норму хаотичности, то отклонения в обе стороны можно рассматривать как "болезнь" и, следовательно, как деградацию. Далее можно контролировать выбор методики "лечения". Здесь снова вступает в игру критерий относительной степени упорядоченности. Если по этому критерию "лечение" приближает состояние открытой системы к норме, то имеет место процесс самоорганизации. В противном случае "лечение" вызывает дальнейшую деградацию.

Но каковы же критерии относительной степени упорядоченности? Что является относительной мерой порядка или беспорядка? Это очень сложные вопросы, и ответы на них были получены совсем недавно.

Трудности введения относительной меры упорядоченности (или, напротив, хаотичности) открытых систем связаны в первую очередь с отсутствием четких определений самих исходных понятий: хаос, порядок, деградация, самоорганизация. Определения этих понятий, как уже отмечалось, являются в большой мере условными. Мы только что отметили, что далеко не всегда, особенно в биологии, а также социологии и экономике, переход к более хаотическому состоянию следует рассматривать как деградацию. Существенным является рассмотрение отклонений от нормы хаотичности.

В связи с изложенным полезно рассмотреть основные понятия более подробно. Это и откроет нам путь для формулировки критерия относительной степени упорядоченности, без которого сами понятия деградации и самоорганизации остаются фактически бессодержательными.

IV. ФИЗИЧЕСКИЙ И ДИНАМИЧЕСКИЙ ХАОС. НЕРАВНОВЕСНЫЕ ФАЗОВЫЕ ПЕРЕХОДЫ

Хаос и порядок — понятия, которые играли существенную роль уже в мировоззрении философов древности. Не вдаваясь в детали, отметим лишь сформулированные ими положения, которые сохраняют свое значение и по сей день.

По представлениям Платона и его учеников, хаос — состояние материи, которое остается по мере устранения возможностей проявления ее свойств. С другой стороны, из хаоса возникает все, что составляет содержание мироздания, то есть из хаоса может рождаться порядок.

В физике понятия "хаос" и "хаотическое движение" являются фундаментальными, но все же недостаточно четко определенными. Действительно, согласно Больцману, наиболее хаотическим является движение в состоянии равновесия. Хаотическими, однако, называют и движения, далекие от равновесного. Это, например, "движения" в генераторах шума, предназначенных для подавления сигналов.

Хаотическими называют, как правило, и различного рода турбулентные движения в газах и жидкостях. Примером служит турбулентное движение в трубах. Оно возникает из ламинарного движения при достаточно большом перепаде давления на концах трубы. При этом представление о турбулентном движении как более хаотичном, чем ламинарное, кажется само собой разумеющимся. Такой вывод основан, однако, на смешении понятий сложности и хаотичности. При наблюдении турбулентного движения проявляется именно сложность движения. Вопрос же о степени хаотичности требует дополнительного анализа, и для количественных оценок необходимы соответствующие критерии.

В последние годы стало широко использоваться понятие "динамический хаос" для характеристики сложных движений в сравнительно простых динамических системах. Слово "динамический" означает, что отсутствуют источники флуктуации — источники беспорядка.

По этой причине понятие "динамическая система" отвечает определенной идеализации. Более реальное хаотическое движение с учетом и случайных источников можно назвать "физический хаос". Его примером и является хаотическое движение атомов и молекул в состоянии равновесия.

Первый пример динамического хаоса был обнаружен в работе Эдварда Лоренца в 1963 году. Он исследовал решение уравнений, которые служат математической моделью конвективного движения в газах и жидкостях. Конвективное движение возникает благодаря совместному действию поля тяжести и градиента температуры, создаваемого внешним источником тепла. Речь идет, таким образом, об открытой системе.

Представим себе слой жидкости, который подогревается снизу. Конвективное движение выражается в том, что более нагретые элементы жидкости перемещаются вверх, а более холодные - вниз. Происходит тем самым передача тепла снизу вверх. При достаточно малых градиентах температуры перенос тепла определяется за счет теплопроводности. Это молекулярный — неорганизованный — процесс. Он не сопровождается упорядоченным гидродинамическим движением, которое могло бы, подобно регулировке уличного движения, управлять переносом тепла.

Ситуация существенно меняется, когда градиент температуры превышает некоторое критическое значение. Изменение проявляется в том, что в жидкости возникает упорядоченное макроскопическое движение. Оно и называется конвективным. В результате происходит саморегулировка теплового потока: внутри ячеек более теплая жидкость поднимается вверх, а по краям более холодная опускается вниз. Таким образом, распределение встречных тепловых потоков становится с упорядоченным.

Эта ситуация напоминает регулировку встречных потоков при уличном движении. Есть, однако, и существенная разница. Действительно, регулировка уличного движения регламентируется правилами уличного движения. При конвективном же движении имеет место процесс самоорганизации. Задается лишь градиент температуры. Перестройка же движения происходит благодаря внутренним свойствам самой системы. Внешне результат этой перестройки проявляется в том, что на поверхности жидкости появляется диссипативная пространственная структура - ячейки Бенуара. Благодаря такой перестройке обеспечивается большая пропускная способность, чем при молекулярном — неупорядоченном — теплопереносе. Появление новой структуры можно рассматривать как неравновесный фазовый переход.

Другим примером неравновесного фазового перехода может служить возникновение когерентного электромагнитного излучения в квантовых оптических генераторах — лазерах. Отметим условия, необходимые для возникновения неравновесных фазовых переходов, которые выражаются в образовании новых диссипативных структур.

  • Диссипативные структуры могут образовываться только в открытых системах. Только в них возможен приток энергии, компенсирующий потери за счет диссипации и обеспечивающий существование более упорядоченных состояний.
  • Диссипативные структуры возникают в макроскопических системах, то есть в системах, состоящих из большого числа элементов (атомов, молекул, макромолекул, клеток и т.д.). Благодаря этому возможны коллективные - синергетические взаимодействия, необходимые хотя перестройки системы.
  • Диссипативные структуры возникают лишь в системах, описываемых нелинейными уравнениями для макроскопических функций. Примерами могут служить кинетические уравнения, например уравнение Больцмана, уравнения газовой динамики и гидродинамики, уравнения Максвелла в электродинамике для напряженностей электромагнит- наго поля и т.д.
  • Для возникновения диссипативных структур нелинейные уравнения должны при определенных значениях управляющих параметров допускать из вменение симметрии решения. Такое изменение выражается, например, в переходе от молекулярного теплопереноса к конвективному теплопереносу по ячейкам Бенуара.

Неравновесные фазовые переходы гораздо разнообразней, чем равновесные. Они играют существенную роль не только в физических, но и в химических и биологических процессах. Все больше осознается роль неравновесных фазовых переходов и в социальных системах, и в экономике.

Рассмотрим математическую модель, которая была использована в работе Лоренца для описания конвективного движения в атмосфере с целью предсказания погоды.

Конвективное движение в атмосфере описывается весьма сложными уравнениями газовой динамики. Они служат примером уравнений механики сплошной среды. Для математического моделирования этого движения Лоренц использовал весьма упрощенную модель — систему трех обыкновенных, но нелинейных дифференциальных уравнений. Они представляют собой динамические уравнения для макроскопических характеристик среды - компонент Фурье локальной скорости и температуры. Их решение может быть проведено лишь численно, с подошью компьютеров.

Проведенный анализ показал, что при достаточно больших значениях градиента температуры поведение решения является настолько сложным, что соответствующие движения воспринимаются как хаотические. Это и дало основание ввести новое понятие "динамический хаос".

Более того, было установлено, что малейшее изменение начальных условий радикально меняет характер движения. Тем самым движение оказывается динамически неустойчивым. Поскольку начальные условия могут быть заданы лишь с конечной точностью, то предсказание вида движения по заданным начальным условиям становится практически невозможным.

Таким образом, из-за наличия динамической неустойчивости движения в атмосфере задача долгосрочного прогноза погоды становится чрезвычайно трудной.

V. УПРАВЛЯЮЩИЕ ПАРАМЕТРЫ

Итак, термином "хаос" характеризуют самые различные виды сложных движений. Во многих случаях, как мы видели, хаотическое движение очень трудно отличить от упорядоченного, но очень сложного движения. По этой причине возникает необходимость в критериях относительной степени упорядоченности или хаотичности различных движений в открытых системах. При этом оказывается очень важным выбор управляющих параметров, при изменении которых и происходят неравновесные фазовые переходы.

Выбор управляющих параметров представляет во многих случаях самостоятельную задачу. При этом возможны, естественно, ошибки. В связи с этим критерии степени упорядоченности должны содержать и возможность контроля правильности сделанного выбора управляющих параметров.

Приведем примеры. В лазерах управление может осуществляться путем изменения уровня накачки, то есть вклада энергии, за счет которой создается инверсная заселенность. В классических генераторах накачке соответствует так называемый параметр обратной связи.

При конвективном движении управляющим параметром служит градиент температуры. При переходе от ламинарного течения к турбулентному управление может осуществляться изменением разности давления на концах трубы.

В медицине роль управляющих параметров могут выполнять лекарства. Наблюдение за состоянием больного позволяет контролировать правильность выбора лекарства. Роль управляющего параметра играет и скальпель хирурга. Управляющим параметром может служить и время выздоровления - время. в течение которого организм без внешнего вмешательства возвращается к норме.

VI. ДИНАМИЧЕСКОЕ И СТАТИСТИЧЕСКОЕ ОПИСАНИЕ СЛОЖНЫХ ДВИЖЕНИЙ

Во введении мы отметили, сколь драматичным было соперничество двух теорий статистического и динамического описания неравновесных процессов. Хотя в настоящее время "накал страстей" не столь велик, эти два направления и по сей день развиваются в значительной мере независимо. Необходимость их синтеза особенно остро ощущается в последние годы, в первую очередь в связи с развитием физики открытых систем.

В чем же причина столь долгого противостояния этих двух фундаментальных научных направлений? Является ли такое независимое развитие оправданным?

Ответ на второй вопрос очевиден: их синтез необходим. Первый же вопрос не столь простой. Ниже мы попытаемся дать на него ответ.

Выделим два класса систем: динамические и стохастические (или статистические). Такое разделение является условным, так как во многих случаях трудно провести различие между динамическим и физическим хаосом. Его, однако, можно провести на основе численного эксперимента. Это оправдано, поскольку практически все представляющие интерес математические модели не имеют аналитических решений.

В основу классификации положим свойство воспроизводимости движения по заданным начальным условиям. Тогда, по определению, к динамическим относятся воспроизводимые, а к стохастическим - не воспроизводимые по начальным данным движения в нелинейных диссипативных системах.

Естественно, что в реальном эксперименте, когда наличие шума неизбежно, все процессы в той или иной мере являются стохастическими. При численном же эксперименте возможно точное (при заданной разрядности компьютера) повторение начальных условий. Воспроизводимость решения зависит лишь от структуры математической модели. Если уравнения не содержат случайных источников, то процесс воспроизводим и. следовательно, движение является динамическим, хотя оно и может быть при этом очень сложным и практически непредсказуемым. В противном случае (при наличии тех или иных источников), когда движение не воспроизводимо по начальным данным, мы имеем дело, следовательно, со стохастическим движением.

При исследовании стохастических процессов путем численного эксперимента существенно, что источники случайных чисел в компьютерах построены по определенному алгоритму и являются поэтому фактически детерминированными. Они могут рассматриваться как случайные, если характерные времена повторения для них значительно больше характерных времен релаксации динамической системы.

Основной особенностью динамического хаоса служит динамическая неустойчивость движения. Она выражается в сильной (экспоненциальной) расходимости близких в начальный момент траекторий. Следствием ее является перемешивание траекторий, наличие которого и позволяет перейти от полного описания на основе уравнений движения всех частиц к более простым уравнениям для функций, сглаженных по объему перемешивания. Тем самым радикально меняется способ описания. Система частиц заменяется сплошной средой.

Именно так, не делая на этом акцента, поступил Больцман, когда ввел свое знаменитое кинетическое уравнение для плотности распределения частиц в пространстве шести измерений — в пространстве координат и компонент скорости. Таким образом, функция распределения, для которой Больцман записал свое уравнение, является макроскопической характеристикой.

В результате такого радикального изменения меняется и временная симметрия уравнений. Именно система обратимых уравнений механики для системы частиц заменяется необратимым уравнением для макроскопической плотности сплошной среды - кинетическим уравнением Больцмана. Как следствие этого возникают новые характеристики, которых нет в механике частиц. Важнейшей из них является энтропия.

После классических работ А. Пуанкаре можно выделить два этапа развития динамической теории диссипативных систем. Первый связан с возникновением радиотехники, с необходимостью развития для этих целей теории автоколебаний. Замечательные физические и математические результаты в этой области принадлежат Ван дер. Полю, Л.И. Мандельштаму, А.А. Андронову, А.А. Витту, Л.С. Понтрягину, Н.М. Крылову, Н.Н. Боголюбову и многим другим. Особое место в установлении связи динамического и статистического описания сложных движений принадлежит очень рано ушедшему из жизни Николаю Сергеевичу Крылову.

Второй этап развития динамической теории стимулировался проблемами теории турбулентности и трудностями решения задачи о долгосрочном прогнозе погоды. Фактическим его началом явилась работа Эдварда Лоренца. Значение этой работы было понято, однако, значительно позднее, после появления статьи математиков Д. Рюэля и Ф. Такенса, опубликованной в 1971 году. В ней был введен новый математический образ сложного движения в нелинейных диссипативных динамических системах — странный аттрактор.

Слово "странный" подчеркивает два свойства аттрактора. Это, во-первых, необычность его геометрической структуры. Она не может быть представлена в виде кривых или плоскостей, то есть геометрических элементов целой размерности. Размерность странного аттрактора является дробной или, как принято говорить, фрактальной.

Во-вторых, странный аттрактор - это притягивающая область для траекторий из окрестных областей. При этом все траектории внутри странного аттрактора динамически неустойчивы.

Странный аттрактор существует только в нелинейных диссипативных системах с числом переменных больше двух. Так, уравнения Лоренца представляют систему трех нелинейных диссипативных уравнений. Напомним, что автоколебания, например в генераторе Ван дер. Поля, описываются системой двух уравнений. В этом случае имеются лишь простые аттракторы: состояние покоя (точка) и предельный цикл (замкнутая кривая). Для возможности существования странного аттрактора необходимо усложнение генератора Ван дер. Поля. Оно может быть осуществлено различными способами.

Один из них принадлежит B.C. Аниченко и В.В. Астахову. Они ввели дополнительную обратную связь с использованием полупериодного детектора. Такой генератор описывается системой трех дифференциальных уравнений, которые содержат два управляющих параметра: параметр обратной связи и характерный временной параметр, определяющий степень запаздывания.

Результаты физического и численного экспериментов показали следующее. При фиксированном времени запаздывания по мере увеличения параметра обратной связи в генераторе возникает последовательность бифуркаций удвоения периода колебаний - бифуркаций Фейгенбаума. Так происходит до некоторого критического значения параметра обратной связи. При значениях больше критического возникает странный аттрактор со сложным чередованием областей динамического хаоса и порядка. При этом в широкой области значений параметров наблюдалась достаточная близость результатов физического и численного анализа. Это соответствие нарушается, однако, вблизи критических точек - точек бифуркации, где динамическая математическая модель генератора оказывается недостаточной.

Подведем некоторые итоги. Мы видели, что в сравнительно простых динамических системах существуют чрезвычайно сложные движения, которые воспринимаются как хаотические. Это и дало основание для введения новых понятий: странный аттрактор и динамический (или детерминированный) хаос.

Слово "хаос" является, как правило, негативным как в физике и биологии, так, например, и в экономике. Это понятие, однако, как уже отмечалось выше, очень многогранно. Так, жизнь невозможна как при полном хаосе, так и при полном порядке. Для нормального организма нужна некоторая норма степени хаотичности. Для ее определения и поддержания необходимы количественные оценки относительной степени хаотичности.

Покажем, что динамическая неустойчивость может играть в физике открытых систем и конструктивную роль. Начнем с иллюстративного примера из социологии. Представим себе, что происходит лекция для учителей, которые съехались из различных областей России. Предположим, что лекция подошла к концу, исчерпаны все вопросы. Примем это состояние слушателей за начальное. Рассмотрим два возможных варианта их дальнейшего движения. 1. Слушатели после окончания лекции перемешаются вместе, не удаляясь друг от друга на значительные расстояния. 2. Слушатели разъезжаются по местам работы и жительства - "разбегаются экспоненциально". Иными словами, движение слушателей становится "динамически неустойчивым"1. Какой из этих двух вариантов движения в большей мере способствует использованию полученных во время лекции знаний?

Первый вариант полезен в определенной мере, так как позволяет продолжить обсуждение затронутых в лекции вопросов. Несомненно, вместе с тем, что лишь второй вариант движения, когда имеет место "динамическая неустойчивость" и имеет место "перемешивание" траекторий слушателей по территории России, позволяет донести полученные знания до школьников.

Этот пример демонстрирует, что динамическая неустойчивость движения и перемешивание могут и не вести к хаосу, а играть позитивную и конструктивную роль.

Вернемся после этого иллюстративного примера к физической системе. Рассмотрим разреженный газ. Это означает, что объем атома или молекулы газа гораздо меньше среднего объема, который приходится на одну частицу. Представим атомы в виде абсолютно упругих шариков. Такая модель во многих случаях оказывается вполне оправданной.

С точки зрения механики, для описания эволюции газа надо использовать систему уравнений для всех его атомов. Такая задача непосильна даже для самых мощных компьютеров. В чем же выход? Как же найти способ описания неравновесных процессов в газе - в системе, состоящей из огромного числа части? Покажем, что решение такой задачи возможно и именно благодаря конструктивной роли динамической неустойчивости движения атомов газа.

Благодаря динамической неустойчивости движения — экспоненциальному разбеганию траекторий, происходит перемешивание траекторий в фазовом пространстве. Это открывает возможность ввести понятие "сатошная среда" и использовать вместо микроскопических уравнений движения частиц газа приближенные уравнения для макроскопических функций. Атомарная структура системы принимается во внимание при определении понятия "точка сплошной среды" Для этого необходимо конкретное определение физически бесконечно малых масштабов времени и длины и соответствующего физически бесконечно малого объема, который и играет роль объема "точки" сплошной среды. Такое определение должно быть согласовано с определением минимальной области перемешивания и минимальным временем развития динамической неустойчивости.

ЛИТЕРАТУРА

1 Пригожин И. От существующего к возникающем. М.: Наука, 1985.

2. Бакен Г. Синергетика. М: Мир, 1980.

3. Климонтович ЮЛ. Статистическая теория открытых систем. М.: ЯНУС, 1995.

4. Климонтович Ю.Л. Физика открытых систем // Успехи физических наук. 1966. Т. 168.

5. Самоорганизация в науке // Под ред. И.Г. Акчурина и В.И. Аршинова. М.: Арго, 1994.